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Abstract

We consider the σ-model for closed bosonic string propagating
in the coordinate dependent metric and Kalb-Ramond field. Firstly,
we consider the generator of both general coordinate and local gauge
transformations. The Poisson bracket algebra of these generators is
obtained and we see that it gives rise to the Courant bracket. Sec-
ondly, we consider generators in a new basis, consisting of the σ
derivative of coordinates, as well as the auxiliary currents. Their
Poisson bracket algebra gives rise to the Courant bracket, twisted by
the Kalb-Ramond field. Finally, we calculate the algebra of the T-
dual generator. The Poisson bracket algebra of T-dual generator gives
rise to the Roytenberg bracket, equivalent to the bracket obtained by
twisting the Courant bracket by the non-commutativity parameter,
which is T-dual to the Kalb-Ramond field. We show that the twisted
Courant bracket and the Roytenberg bracket are mutually related via
T-duality.

1. Bosonic string action

The closed bosonic string is moving in a curved background, associated with
the symmetric metric tensor field Gµν = Gνµ, the antisymmetric Kalb-
Ramond tensor field Bµν = −Bνµ, as well as the scalar dilaton field Φ.
If we consider the case of constant dilation field, in a conformal gauge
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gαβ = e2F ηαβ, the action is given by [1]

S =

∫
Σ
d2ξL = κ

∫
Σ
d2ξ
[1

2
ηαβGµν(x) + εαβBµν(x)

]
∂αx

µ∂βx
ν . (1)

The integration goes over two-dimensional world-sheet Σ parametrized by
ξα(ξ0 = τ, ξ1 = σ). Coordinates of the D-dimensional space-time are
xµ(ξ), µ = 0, 1, ..., D − 1, ε01 = −1 and κ = 1

2πα′ . In a usual way, we
derive the expression for the canonical momenta

πµ =
∂L
∂ẋµ

= κGµν(x)ẋν − 2κBµν(x)x′ν , (2)

and obtain the Hamiltonian

HC =
1

2κ
πµ(G−1)µνπν − 2x′µBµν(G−1)νρπρ +

κ

2
x′µGEµνx

′ν , (3)

where GEµν = Gµν − 4(BG−1B)µν is the effective metric. It is possible to
rewrite the Hamiltonian in a more convenient form

HC =
1

4κ
(G−1)µν

[
j+µj+ν + j−µj−ν

]
. (4)

where the currents j±µ are defined by

j±µ(x) = j0µ ± j1µ = πµ + 2κΠ±µνx
′ν , (5)

and Π±µν = Bµν± 1
2Gµν are composite fields. The τ−component of current

jµ will be marked as an auxiliary current j0µ = πµ + 2κBµνx
′ν ≡ iµ. Now,

we rewrite the equation (5)

j±µ = iµ ± κGµνx′ν . (6)

The generalized current is defined by

JC(ξ,ΛC) = ξµ(x)iµ + ΛCµ (x)κx′µ , (7)

where ξµ and ΛCµ are some coordinate dependent parameters. Due to their
index structure, the former parameters can be regarded as vector field com-
ponents and the latter as 1-form components. The suitable language for
description of generalized currents is the one of generalized geometry [2].
The generalized vectors are direct sum of elements of tangent and cotangent
bundle over some manifold, meaning that the generalized geometry treats
vectors and 1-forms on equal footing. Therefore, it is possible to consider
the generalized current as the function on generalized vector ξ ⊕ ΛC .

Besides the algebra of these generalized currents, we are also inter-
ested in algebra of T-dual generalized currents. T-duality [1, 3] is inherent
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to string theory and represents the equivalence of two seemingly different
physical theories. The equivalence manifests itself in a way that all quan-
tities in one theory are identified with quantities in its T-dual theory. It
was firstly noticed in case of the bosonic closed string with one dimension
compactified to a radius R. In that case, mass spectrum is given by [1]

M2 =
K2

R2
+W 2R

2

α′2
, (8)

where K is momentum and W winding number. It is obvious that the
mass spectrum remains invariant upon simultaneously swapping K ↔ W
and R ↔ α′

R . What can be concluded is that spectrums of two theories
that both have one dimension compactified to a circle, where in one case
the circle is of small and in the other of large radius, are indistinguishable.
The momenta in one theory are winding numbers in its T-dual theory, and
vice versa.

We consider the T-duality realized without changing the phase space
[4]. Its transformation rules between the canonical variables are given by

πµ ∼= κx′µ . (9)

When the above relation is integrated over space parameter σ, we obtain
that the T-duality interchanges momenta with the winding numbers. The
background fields have their T-dual counterparts as well [5], namely

?Gµν = (G−1
E )µν , ?Bµν =

κ

2
θµν , (10)

where θµν = − 2
κ(G−1

E BG−1)µν is the non-commutativity parameter. Two
variables are said to be mutually T-dual if they transform one into another
when simultaneously both (9) and (10) are applied [4].

Now we follow the same procedure as above for constructing the T-dual
generalized currents. Applying (9) and (10) to (5), we obtain the current
lµ±, T-dual to current j±µ

lµ± = kµ ± (G−1
E )µνπν , kµ = κx′µ + κθµνπν . (11)

The Hamiltonian can be expressed in terms of these currents by

HC =
1

4κ
GEµν

(
lµ+l

ν
+ + lµ−l

ν
−

)
. (12)

Substituting the expression (11) in (12), we obtain the Hamiltonian in the
form (4). The Hamiltonian remains invariant under T-duality.

The generalization of current lµ± is given by

JR(ξR,Λ) = ξµR(x)πµ + Λµ(x)kµ . (13)
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Instead of auxiliary current iµ and coordinate σ−derivative x′µ, the basis
for T-dual generalized currents consist of T-dual auxiliary current kµ and
canonical momenta πµ. The coefficients ξµR are arbitrary vector field com-
ponents, while Λµ are arbitrary 1-form components. Next, we will see how
these currents are related to the symmetry generators.

2. Symmetry generators algebra

Let us start with the general coordinate transformations. They are gener-
ated by

GGCT (ξ) =

∫ 2π

0
dσξµ(x)πµ . (14)

Action of the general coordinate transformation on background fields is
governed by the action of Lie derivative [6]

δξGµν = LξGµν , δξBµν = LξBµν . (15)

The Lie derivative is defined by Lξ = iξd+ diξ, where the interior product
iξ acts as a contraction with a vector field ξ, while the exterior derivative
d extends the concept of the differential of a function to differential forms.
The commutator of two Lie derivatives results in another Lie derivative

Lξ1Lξ2 − Lξ2Lξ1 = L[ξ1,ξ2]L , (16)

where by [ξ1, ξ2]L, we marked the Lie bracket between two vector fields ξ1

and ξ2. Explicitly, it is given by

([ξ1, ξ2]L)µ = ξν1∂νξ
µ
2 − ξ

ν
2∂νξ

µ
1 . (17)

Calculating the Poisson bracket algebra of general coordinate transfor-
mations generators GGCT (14), we obtain the relation:

{GGCT (ξ1), GGCT (ξ2)} = −GGCT ([ξ1, ξ2]L) . (18)

We note that this algebra gives rise to Lie bracket.
We would like to extend the generator GGCT so that it includes the

local gauge transformations as well. They are generated by [6]

GLGT (Λ) =

∫
dσΛµκx

′µ , (19)

where Λµ are gauge parameters that are 1-form components. The action of
local gauge transformations on background fields is given by

δΛGµν = 0, δΛBµν = ∂µΛν − ∂νΛµ . (20)

When gauge parameter is changed so that total derivative of arbitrary
function is added Λµ → Λµ + ∂µλ, the action of generator does not change.
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Hence, different gauge parameters generate same symmetry and therefore
the generator is reducible.

Local gauge transformations are T-dual to general coordinate transfor-
mations, due to relation (9). The sum of both generators (14) and (19)
results in symmetry generator that is T-dual to itself

G(ξ ⊕ Λ) =

∫
dσ
[
ξµ(x)πµ + Λµκx

′µ
]
. (21)

Using the language of generalized geometry, we treat the generator (21)
as a function of generalized gauge parameter, defined as the direct sum of
vector and 1-form parameter ξ ⊕ Λ.

2.1. Courant bracket

The Poisson bracket algebra of the generators (21) is given by

{G(ξ1 ⊕ Λ1), G(ξ2 ⊕ Λ2)} = −G([ξ1 ⊕ Λ1, ξ2 ⊕ Λ2]C) , (22)

where [ξ1 ⊕ Λ1, ξ2 ⊕ Λ2]C is the Courant bracket [7]. It is considered to
be the generalized geometry extension of the Lie bracket. Just like the Lie
bracket acts on vectors, Courant bracket acts on generalized vectors. Its
full expression is given by

[ξ1⊕Λ1, ξ2⊕Λ2]C = [ξ1, ξ2]L⊕
(
Lξ1Λ2−Lξ2Λ1−

1

2
d(iξ1Λ2− iξ2Λ1)

)
. (23)

The first term [ξ1, ξ2]L on the right hand side of previous equation gives
the vector, while the other terms give 1-form. It has been shown before
[8] that the algebra of symmetry transformations gives rise to the Courant
bracket.

Courant bracket cannot be a bracket of a Lie algebra, as it does not
satisfy the Jacobi identity. However, this does not pose a problem, as
the deviation from Jacobi identity is closed form that disappears after the
integration and hence correspond to a trivial symmetry. The Jacobiator of
Courant bracket is given by [2]

[[ξ1⊕Λ1, ξ2⊕Λ2]C , ξ3⊕Λ3]C+cyclic = dNij(ξ1⊕Λ1, ξ2⊕Λ2, ξ3⊕Λ3)C , (24)

where the Nijenhuis operator is defined by

Nij(ξ1⊕Λ1, ξ2⊕Λ2, ξ3⊕Λ3)C =
1

3
< (ξ1⊕Λ1, ξ2⊕Λ2)C , ξ3⊕Λ3 > +cycl.

(25)
and < ξ1 ⊕Λ1, ξ2 ⊕Λ2 >= 1

2(ξ1(Λ2)− ξ2(Λ1)) is the natural inner product
between generalized vectors.
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2.2. Twisted Courant bracket

We claimed that it is possible to obtain the generalized currents from the
symmetry generators. To demonstrate that, let us now define the new
gauge parameter

ΛCµ = Λµ + 2Bµνξ
ν . (26)

This change of parameter can be interpreted as the B-transformation acting
on the generalized gauge parameter

OBΛ =

(
δµν 0

2Bµν δνµ

)
·
(
ξν

Λν

)
=

(
ξµ

ΛCµ

)
. (27)

It is suitable to rewrite the generator (21) in the new basis

GC(ξ ⊕ ΛC) =

∫
dσ
[
ξµiµ + κΛCµ x

′µ
]
. (28)

Comparing the expression for the symmetry generator GC (28) with the
expression for generalized currents (7), we see that this generator is the
charge corresponding to the current JC .

The change of basis results in the appearance of H-flux in the basis
algebra

{iµ(σ), iν(σ̄)} = −2κBµνρx
′ρδ(σ − σ̄) , (29)

where
Bµνρ = (dB)µνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν (30)

is the H-flux. The Poisson bracket algebra of generators was obtained in
[4, 9] and written in the form

{GC(ξ1 ⊕ ΛC1 ), GC(ξ2 ⊕ ΛC2 )} = −GC([ξ1 ⊕ ΛC1 , ξ2 ⊕ ΛC2 ]B) . (31)

The bracket [ξ1 ⊕ ΛC1 , ξ2 ⊕ ΛC2 ]B is called the Courant bracket, twisted by
a 2-form 2Bµν . This twist is realized by

[OB(ξ1 ⊕ Λ1),OB(ξ2 ⊕ Λ2)]C −OB[ξ1 ⊕ Λ1, ξ2 ⊕ Λ2]C = H(ξ1, ξ2, .) . (32)

We see that it differs from the Courant bracket (23) by the contraction
of H-flux H = dB (30) with two gauge parameters ξ1 and ξ2. The full
expression for this bracket is given by

[ξ1 ⊕ ΛC1 , ξ2 ⊕ ΛC2 ]B = [ξ1, ξ2]L ⊕
(
Lξ1ΛC2 − Lξ2ΛC1 (33)

− 1

2
d(iξ1ΛC2 − iξ2ΛC1 ) +H(ξ1, ξ2, .)

)
.
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2.3. Roytenberg bracket

Finally, we are going to consider one more transformation of the gauge
parameter

ξµR = ξµ + κθµνΛν . (34)

This can be written as a generalized gauge parameter transformation, char-
acterized by the action of antisymmetric θµν bi-vector

OθΛ =

(
δµν κθµν

0 δνµ

)(
ξν

Λν

)
=

(
ξRµ
Λµ

)
. (35)

The symmetry generator can be rewritten with new parameters in a new
basis

GR(ξR ⊕ Λ) =

∫
dσ
[
ξµRπµ + Λµk

µ
]
. (36)

It is obvious that the generator is the charge corresponding to current JR
(13) and that the T-duality relation GR(ξR ⊕ Λ) ∼= GC(ξ ⊕ ΛC) holds.

There is a presence of non-geometric fluxes in basis algebra

{kµ(σ), kν(σ̄)} = −κQ µν
ρ kρδ(σ − σ̄)− κ2Rµνρπρδ(σ − σ̄) , (37)

where Q µν
ρ = ∂ρθ

µν is Q-flux and Rµνρ = θµσ∂σθ
νρ + θνσ∂σθ

ρµ + θρσ∂σθ
µν

is R-flux. The new generator algebra [4, 10] is given by

{GR(ξR1 ⊕ Λ1), GR(ξR2 ⊕ Λ2)} = −GR([ξR1 ⊕ Λ1, ξ
R
2 ⊕ Λ2]R) , (38)

where the resulting bracket is the Roytenberg bracket [11]. It is a gen-
eralization of Courant bracket, obtained by twisting the Courant bracket
by some bi-vector. The corresponding bi-vector in our case is the non-
commutativity parameter κθµν . The Roytenberg bracket differs from the
Courant bracket by

[Oθ(ξ1 ⊕ Λ1),Oθ(ξ2 ⊕ Λ2)]C −Oθ[ξ1 ⊕ Λ1, ξ2 ⊕ Λ2]C , (39)

In its most general form, Roytenberg bracket encompasses all fluxes. In
this case, canonical momenta are commutative, meaning that there is no
H-flux present in basis algebra. The full expression is

[ξ1 ⊕ ΛR1 , ξ2 ⊕ ΛR2 ]R =
(

[ξ1, ξ2]L − κ[ξ2,Λ
R
1 θ]L + κ[ξ1,Λ

R
2 θ]L (40)

+
κ2

2
[θ, θ]S(ΛR1 ,Λ

R
2 , .)− (Lξ2ΛR1 − Lξ1ΛR2 +

1

2
d(iξ1ΛR2 − iξ2ΛR1 ))κθ

)
⊕
(
Lξ1ΛR2 − Lξ2ΛR1 −

1

2
d(iξ1b− iξ2ΛR1 )− [ΛR1 ,Λ

R
2 ]θ

)
.

The expression [θ, θ]S(ΛR1 ,Λ
R
2 , .) is the Schouten-Nijenhuis bracket [12] con-

tracted with two 1-forms. It is a generalization of the Lie bracket on the
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space of multi-vectors. The expression [ΛR1 ,Λ
R
2 ]θ is the Koszul bracket [13],

a generalization of the Lie bracket on the space of differential forms.
We note that 2-form 2Bµν and bi-vector κθµν used for twisting the

Courant bracket in two cases are mutually T-dual (10). Moreover, both of
these brackets appeared in considering charges corresponding to the gener-
alized currents, defined in mutually T-dual bases. Therefore, we can con-
clude that the T-duality connects twisted Courant and Roytenberg bracket,
as long as they are twisted by the mutually T-dual fields.

3. Conclusions

We considered a standard σ-model for closed bosonic string. We wrote
Hamiltonian in terms of two types of currents. The components of these
currents have been used as bases in which generalized currents were defined.
These generalized currents are defined in mutually T-dual bases.

Afterwards, we considered the self T-dual symmetry generator G(ξ⊕Λ).
It takes the generalized gauge parameter ξ⊕Λ as a parameter and generates
both general coordinate transformations and local gauge transformations.
The Poisson bracket algebra of these generators was calculated and the
Courant bracket has been obtained. The Courant bracket appeared in a
same way in which Lie bracket was obtained in the case of general coordi-
nate transformations algebra.

Next, we considered the action of B-transformation to the generalized
gauge parameter. The symmetry generator written in terms of the resulting
gauge parameter is the charge corresponding to the generalized current JC .
The Poisson bracket algebra of these generators gives rise to the Courant
bracket twisted by a 2-form 2B.

In the end, we consider the action of θ-transformation on the general-
ized gauge parameter. The newly obtained generator is the charge for the
generalized current JR and it gives rise to the Roytenberg bracket. The
Roytenberg bracket in general represent the Courant bracket twisted by a
bi-vector. In this specific case, the bi-vector is κθµν , which is T-dual to the
Kalb-Ramond field Bµν . Consequently, we conclude that both the twisted
Courant bracket and the Roytenberg bracket appear when generalized cur-
rents defined in two mutually T-dual bases are considered.
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