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Abstract

We obtain the non-unitary classical r-matrix of the spin 1 trigonometric Gaudin
model with boundary terms. Starting from the R-matrix and corresponding K-
matrix of the spin 1

2 XXZ Heisenberg chain the so-called fusion procedure yields
the R and K matrices of the spin 1 XXZ Heisenberg chain. We demonstrate
that the corresponding classical r and K matrices satisfy, respectively, the classical
Yang-Baxter equation and the classical reflection equation. Consequently, we show
that the relevant non-unitary classical r-matrix satisfies the generalized classical
Yang-Baxter equation and therefore defines the non-periodic spin 1 trigonometric
Gaudin model.

1. Introduction

An approach to study periodic Gaudin models [1, 2, 3] is based on the
unitary classical r-matrices [4, 5, 6, 7] and the corresponding Sklyanin linear

∗N.M. gratefully acknowledges useful discussions with Eric Ragoucy. I.S. was sup-
ported in part by the Serbian Ministry of Education, Science and Technological Devel-
opment under grant number ON 171031.
† e-mail address: isalom@ipb.ac.rs
‡ e-mail address: nmanoj@ualg.pt
§ e-mail address: nantonio@math.ist.utl.pt

277



278 I. Salom, N. Manojlović and N. Cirilo António

bracket [5, 6, 7, 8, 9, 10, 11]. The algebra generated by the entries of
the relevant Lax operators can be used to completely solve the system
through the algebraic Bethe ansatz, or the separation of variable method
[5, 6, 7, 8, 9, 10, 11].

Similar approach to the non-periodic Gaudin models, based on the non-
unitary classical r-matrices and corresponding linear bracket, enabled full
implementation of the algebraic Bethe ansatz in the spin 1

2 case [12, 13,
14, 15, 16, 17, 18, 19]. In this paper we initiate the study of the spin 1
non-periodic Gaudin models by deriving the relevant non-unitary classical
r-matrix. This classical r-matrix is a solution to the generalized classical
Yang-Baxter equation. An important advantage of this approach is that
the generalized classical Yang-Baxter equation is equivalent to both the
classical Yang-Baxter equation and classical reflection equation [15]. To
obtain this non-unitary r-matrix we use the fusion procedure starting from
the quantum R-matrix and the reflection K-matrix of the spin 1

2 XXZ
Heisenberg chain. The classical r-matrix we obtain defines completely the
non-periodic spin 1 Gaudin model.

This paper is organized as follows. In the section 2. we describe briefly
the fusion procedure as applied to the R and K matrices of the spin 1

2 XXZ
Heisenberg chain. The results of the second section are then presented and
analysed in the section 3.. The quasi-classical limit which leads to the spin
1 non-unitary r-matrix is presented in the section 4..

2. Spin 1
2

XXZ Heisenberg chain

In our study of the spin 1
2 XXZ Heisenberg spin chain [16] the starting

point is always the R-matrix [20, 21, 22, 23]

R(λ, η) =


sinh(λ+ η) 0 0 0

0 sinh(λ) sinh(η) 0

0 sinh(η) sinh(λ) 0

0 0 0 sinh(λ+ η)

 . (1)

This R-matrix satisfies the Yang-Baxter equation [24, 22, 23, 20, 21] in the
space C2 ⊗ C2 ⊗ C2

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ), (2)

and it also has other relevant properties such as

U(1) symmetry
[
σ31 + σ32, R12(λ)

]
= 0;

unitarity R12(λ)R21(−λ) = sinh(η − λ) sinh(η + λ)1;
parity invariance R21(λ) = R12(λ);
temporal invariance Rt

12(λ) = R12(λ);
crossing symmetry R(λ) = J1Rt2(−λ− η)J1,
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where t2 denotes the transpose in the second space and the two-by-two
matrix J is proportional to the Pauli matrix σ2, i.e. J = ıσ2.

A way to introduce non-periodic boundary conditions which are com-
patible with the integrability of the bulk model, was developed in [25].
Boundary conditions on the left and right sites of the chain are encoded in
the left and right reflection matrices K− and K+. The compatibility condi-
tion between the bulk and the boundary of the system takes the form of the
so-called reflection equation. It is written in the following form for the left
reflection matrix acting on the space C2 at the first site K−(λ) ∈ End(C2)

R12(λ− µ)K−1 (λ)R21(λ+ µ)K−2 (µ) = K−2 (µ)R12(λ+ µ)K−1 (λ)R21(λ− µ).
(3)

Due to the properties of the R-matrix (1) the dual reflection equation
can be presented in the following form

R12(µ− λ)K+
1 (λ)R21(−λ− µ− 2η)K+

2 (µ) =
K+

2 (µ)R12(−λ− µ− 2η)K+
1 (λ)R21(µ− λ).

(4)

One can then verify that the mapping

K+(λ) = K−(−λ− η) (5)

is a bijection between solutions of the reflection equation and the dual re-
flection equation. After substitution of (5) into the dual reflection equation
(4) one gets the reflection equation (3) with shifted arguments.

The general, spectral parameter dependent, solutions of the reflection
equation (3) and the dual reflection equation (4) can be written as follows
[26, 27, 28]

K−(λ) =

(
κ− sinh(ξ− + λ) ψ− sinh(2λ)
φ− sinh(2λ) κ− sinh(ξ− − λ)

)
, (6)

K+(λ) =

(
κ+ sinh(ξ+ − λ− η) −ψ+ sinh (2(λ+ η))
−φ+ sinh (2(λ+ η)) κ+ sinh(ξ+ + λ+ η)

)
. (7)

Due to the fact that the reflection matrices K∓(λ) are defined up to mul-
tiplicative constants the values of parameters κ∓ are not essential, as long
as they are different from zero. Although the R-matrix (1) has the U(1)
symmetry the reflection matrices K∓(λ) (6) and (7) cannot be brought to
the upper triangular form by the symmetry transformations like in the case
of the XXX Heisenberg spin chain [14].

We will not discuss the Lax operators and the corresponding mon-
odromies, relevant for the study of the spin 1

2 XXZ Heisenberg spin chain
[16]. Our aim is to obtain the R and K matrices corresponding the spin
1 XXZ Heisenberg chain. As our first step we use the fusion procedure
[29, 21] in the space C2⊗C2⊗C2⊗C2 with the aim of deriving the spin 1
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XXZ R-matrix. To this end we observe that the R-matrix (1) at λ = −η is
proportional to the projector onto the antisymmetric subspace of the space
C2 ⊗ C2,

P− =
−1

2 sinh(η)


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0

 . (8)

For our purpose, the relevant projector is the complementary one, which
projects onto the symmetric subspace of the space C2 ⊗ C2,

P+ = 1− P−. (9)

We obtain the spin 1 representation in the tensor product of the last two
spaces,

R1(34)(λ) = P+
34R14(λ− η)R13(λ)P+

34. (10)

It straightforward the check that the corresponding Yang-Baxter equation
is satisfied

R12(λ− µ)R1(34)(λ)R2(34)(µ) = R2(34)(µ)R1(34)(λ)R12(λ− µ). (11)

Analogously, we have

R(12)3(λ) = P+
12R13(λ)R23(λ+ η)P+

12. (12)

Finally, we obtain the relevant R-matrix

R(12)(34)(λ) = P+
34R(12)4(λ− η)R(12)3(λ)P+

34. (13)

In this case, the fusion procedure for the K-matrix [30] yields

K−(12)(λ) = P+
12K

−
1 (λ)R12(2λ+ η)K−2 (λ+ η)P+

12. (14)

A direct calculation shows that the corresponding reflection equation is
satisfied

R(12)(34)(λ− µ)K−(12)(λ)R(34)(12)(λ+ µ)K−(34)(µ) =

= K−(34)(µ)R(12)(34)(λ+ µ)K−(12)(λ)R(34)(12)(λ− µ).
(15)

Therefore we have achieved our main objective in obtaining the relevant R
and K matrices. In the following section we will look at their explicit form
and some important properties.
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3. Spin 1 XXZ Heisenberg chain

In the appropriate bases the R-matrix (13) of the spin one XXZ Heisenberg
chain can be represented as the following 9× 9 matrix

R(λ, η) =



a1
a2 b1

a3 b2 b3
b1 a2

b2 a4 b2
a2 b1

b3 b2 a3
b1 a2

a1


, (16)

where the entries are given by

a1 = sinh(λ+ η) sinh(λ+ 2η), b1 = sinh(λ+ η) sinh(2η),

a2 = sinh(λ) sinh(λ+ η), b2 = sinh2(λ) sinh(2η) cosh(η),

a3 = sinh(λ) sinh(λ− η), b3 = sinh(η) sinh(2η) sinh(λ) sinh(λ+ η),

a4 = sinh(λ) sinh(λ+ η) + sinh(η) sinh(2η).

This R-matrix satisfies the Yang-Baxter equation in the space C3⊗C3⊗
C3

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ), (17)

and has the U(1) symmetry

[h1 + h2, R12(λ, η)] = 0, (18)

where h = diag(1, 0,−1). The similarity transformation

Ad exp(αλ(h1 − h2))R12(λ, η), (19)

with α = 1
2 , yields the O(3) invariant form of this R-matrix [31, 32, 33]. The

R-matrix 16 has some important properties such as regularity, unitarity,
PT-symmetry and crossing symmetry. The regularity condition at λ = 0
reads

R(0, η) = sinh(η) sinh(2η)P, (20)

where P is the permutation matrix of C3 ⊗ C3. The unitarity relation is

R12(λ)R12(−λ) = ρ(λ)1, (21)

here ρ is the following function

ρ(λ) = sinh(λ+ η) sinh(λ+ 2η) sinh(λ− η) sinh(λ− 2η). (22)
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The so-called PT-symmetry states

Rt
12(λ) = R12(λ). (23)

Finally, the R-matrix (16) has the following crossing symmetry property:

R(λ) = (J ⊗ 1)Rt2(−λ− η)
(
J −1 ⊗ 1

)
, (24)

where t2 denotes the transpose in the second space and the matrix J is
given by

J =

(
0 0 −1
0 1 0
−1 0 0

)
. (25)

In the basis in which the R-matrix (13) takes the form (16) the K-matrix
(14) is given by

K−(λ, η) = sinh(2λ+ η)

(
k11 k12 k13

k21 k22 k23

k31 k32 k33

)
, (26)

where

k11 = κ−
2

sinh(ξ− + λ+ η
2 ) sinh(ξ− + λ− η

2 ) + ψ−φ− sinh(2λ− η) sinh(η),

k22 = κ−
2

sinh(ξ− − λ+ η
2 ) sinh(ξ− + λ− η

2 ) + ψ−φ− sinh(2λ− η) sinh(2λ+ η),

k33 = κ−
2

sinh(ξ− − λ+ η
2 ) sinh(ξ− − λ− η

2 ) + ψ−φ− sinh(2λ− η) sinh(η),

k12 = κ−ψ−√2
√

cosh(η) sinh(ξ− + λ− η
2 ) sinh(2λ),

k23 = κ−ψ−√2
√

cosh(η) sinh(ξ− − λ+ η
2 ) sinh(2λ),

k13 = ψ−2
sinh(2λ− η) sinh(2λ),

k21 = κ−φ−
√

2
√

cosh(η) sinh(ξ− + λ− η
2 ) sinh(2λ),

k32 = κ−φ−
√

2
√

cosh(η) sinh(ξ− − λ+ η
2 ) sinh(2λ),

k31 = φ−
2

sinh(2λ− η) sinh(2λ).
(27)

The R-matrix (16) and the above K-matrix satisfy the reflection equa-
tion

R12(λ− µ)K−1 (λ)R21(λ+ µ)K−2 (µ) = K−2 (µ)R12(λ+ µ)K−1 (λ)R21(λ− µ).
(28)

The study of the spin 1 XXZ Heisenberg chain would require the dual
reflection equation and the relevant K+ matrix. Although, now this would
be straightforward we will not proceed in this direction since our main aim
is to derive the corresponding Gaudin model through the so-called quasi-
classical limit [14, 16].
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4. Spin 1 XXZ Gaudin model

The classical r-matrices are essential tools in the study of the Gaudin models
[5, 4, 6, 7, 8, 9, 10]. To this end we observe the quasi-classical property of
the R-matrix (16)

1

sinh2(λ)
R(λ, η) = 1 + ηr(λ) +O(η2), (29)

where the classical r-matrix is given by [4, 6]

r(λ) =
2

sinh(λ)



cosh(λ)
1

− cosh(λ) 1
1

1 1
1

1 − cosh(λ)
1

cosh(λ)


+ coth(λ)1.

(30)

As it is very well known[4, 6], the above r-matrix has the unitarity property

r21(−λ) = −r12(λ), (31)

and it satisfies the classical Yang-Baxter equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0. (32)

Our objective is the non-periodic Gaudin model and therefore we also
need the classical K-matrix [14, 15, 16] which is obtained from the K-matrix
(26) by setting η = 0,

K(λ) ≡ K−(λ, 0). (33)

A direct consequence of the equation (28) is the classical reflection equa-
tion [34, 35, 15]:

r12(λ− µ)K1(λ)K2(µ) + K1(λ)r21(λ+ µ)K2(µ) =

= K2(µ)r12(λ+ µ)K1(λ) + K2(µ)K1(λ)r21(λ− µ).
(34)

It can be shown [15, 12] that by defining the non-unitary classical r-
matrix

rK12(λ, µ) = r12(λ− µ)−K2(µ)r12(λ+ µ)K−12 (µ), (35)

the classical Yang-Baxter equation (32) and (34) combine into one equation,
the so-called generalized classical Yang-Baxter equation[

rK32(ν, µ), rK13(λ, ν)
]

+
[
rK12(λ, µ), rK13(λ, ν) + rK23(µ, ν)

]
= 0. (36)
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As the classical r-matrix defines the Sklyanin linear bracket, an essential
tool in the study of the periodic Gaudin model [5, 6, 7, 8, 9, 10], the non-
unitary r-matrix (34), through the relevant linear bracket, defines the so-
called generalized Gaudin algebra essential in the study of the non-periodic
model [12, 15, 17, 18, 19] .
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[7] B. Jurčo, Classical Yang-Baxter equations and quantum integrable systems (Gaudin
models), in Quantum groups (Clausthal, 1989), Lecture Notes in Phys. Volume 370
(1990) 219–227.
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[17] I. Salom, N. Manojlović and N. Cirilo António, Generalized s`(2) Gaudin algebra
and corresponding Knizhnik-Zamolodchikov equation, Nuclear Physics B 939 (2019)
358-371.
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