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Abstract

We study the geodesic motion of massive test particle in the presense of the
torsional plane-fronted (pp) wave in the three-dimensional (3D) gravity. The idea
of this investigation is to test the appearance of the memory effect for the torsional
waves. Our analysis discovers that the velocity memory effect happens for all waves
that go to zero as, retarded time, u goes to infinity at sufficient fast rate.

1. Introduction

Does some observable change occur when a gravitational wave passes thr-
ough a system of test particles in Minkowski spacetime? The answer is
affirmative and is know as the gravitational memory [1, 2]. This is the
effect that happens when a gravitational wave passes through a system of
test particles, in asymptotically flat spacetime, which are initially at rest.
If, after the passage of a gravitational wave, permanent displacement of
particles occur we call this displacement memory effect [1, 2, 3, 4] and if
particles have non-zero relative velocity we call it velocity memory effect [5,
6, 7]. This is important effect because it represents a possible experimental
set up for the detection of gravitational waves and investigation of their
properties.

In this article we will analyze the geodesic motion of massive test par-
ticles in the background of the pp wave with torsion. The reason why we
undertook this investigation is to see is there a memory effect for grav-
itational waves with torsion in the Poincaré gauge theory [8, 9, 10]. To
investigate this we will use the solutions with propagating torsion [11]. Im-
portant thing to note is that gravitational pp waves in 3D are solutions
which do not exist without torsion [11], meaning that in the absence of
torsion metric becomes trivial. This offers us an interesting opportunity to
study the effects of torsion at the level of geodesic motion.
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The paper is organized as follows. First, we review pp waves with-
out torsion in three dimensions and show that this solutions do not exist
in 3D general relativity. After that, we analyze the pp waves with tor-
sion in 3D Poincaré gauge theory of gravity. Next, we derive the geodesic
equations for the metric of the pp wave with torsion. Unfortunately, the
geodesic equations cannot be solved analytically except in a very special
case, which is not interesting from the aspect of memory effect because it
is not asymptotically flat. Due to this technical problem we had to solve
geodesic equations numerically and results are given as plots of velocity in
a function of retarded time u.

Conventions we are using are the following. The Latin indices (i, j, ...)
refer to the local Lorentz coordinates and run over (0, 1, 2). The spacetime
indices are denoted with letters of Greek alphabet. The contraction of
vector with a form we label with . The ei is triad 1-form and the dual basis
hi is defined by the following equation hi ej = δji . For the Hodge dual we

use the standard symbol ?, and the Hodge dual of triad is ?ei = 1
2ε
ijkejek.

The exterior product of forms is implicit in all formulas.

2. The pp waves without torsion in three-dimensions

To better understand the nature of the pp waves with torsion we start with
the Riemannian pp waves. For more details see Ref. [11].

The metric of the pp waves in Brinkmann coordinates is

ds2 = 2du(Sdu+ dv)− dy2 , (1a)

we, also, introduce an auxiliary function H

S =
1

2
H(u, y) . (1b)

From the metric it is easy to derive the form of the triad ei so that ds2 =
ηije

i ⊗ ej holds, where ηij is the half-null flat metric

ηij =

(
0 1 0
1 0 0
0 0 −1

)
.

The triad is given by

e0 := du , e1 := Sdu+ dv , e2 := dy , (2a)

The dual frame hi define by the requirement hi ej = δji , where is a label
for contraction, reads

h0 = ∂u − S∂v , h1 = ∂v , h2 = ∂y . (2b)
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Starting from the general formula for the Riemann connection

ωij := −1

2

[
hi dej − hj dei − (hi hj dek)ek

]
,

we derive that the only non-zero component is

ω12 = −∂yS e0 . (3a)

From the above connection the Riemannian curvature is easily obtained

Rij = 2e0k[iQj] , (4a)

where ki = (0, 1, 0) is a null vector and

Qi = ∂2
ySe

2δi2 . (4b)

The Ricci 1-form Rici := hm Ricmi is given by

Rici = e0kiQ , Q = hi Qi =
1

2
∂2
yH, (5a)

while the scalar curvature is zero

R = 0 . (5b)

Up to this point discussion was valid for any theory of gravity, now we
want to look at what happens in general relativity in 3D. Action of general
relativity I = −a0

∫
d3xR leads to the vacuum field equations

2a0G
n
i = 0 , (6)

where Gni is the Einstein tensor. Einstein equations, after substitution of
the metric, give

∂2
yH = 0 , (7)

which only has a trivial solution

H = C(u) + yD(u) ,

due to the fact that the curvature identically vanishes and this solution is
diffeomorphic to Minkowski spacetime. This is to be expected because gen-
eral relativity in three-dimensions does not have propagating local degrees
of freedom and consequently should not have a wave solution.
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3. The pp waves with torsion

The theory we will consider is a quadratic Poincaré theory of gravity which
generalizes general relativity with 6 additional quadratic terms and as many
free parameters a0, . . . , a2 and b0, . . . , b2. We will not write the action
interested reader can find more details in Ref. [11].

The pp wave with torsion is a generalization of Riemannian pp wave
which is obtained under assumption that the triad field (2) remains un-
changed, while the connection takes the form

ωij = ω̃ij +
1

2
εijmk

mkne
nG , (8a)

G := S′ +K . (8b)

The function K = K(u, y) is added to account for the effect of torsion,
which is seen from the following expression for torsion

T i := ∇ei =
1

2
Kkikm

?em . (9)

The curvature 2-form, Ricci 1- form and Ricci scalar are given by

Rij = εijmkmk
n?enG

′ ,

Rici =
1

2
kikme

mG′ ,

R = 0 . (10)

The geometric configuration defined by the triad field (2) and the connec-
tion (8) represents a generalized gravitational plane-fronted wave of GRΛ,
or the torsion wave for short. The vector field k = ∂v is the Killing vector
for both the metric and the torsion; moreover, it is a null and covariantly
constant vector field. This allows us to consider the solution (12) as a
generalized pp-wave.

The field equations [11] are given by

a0G
′ − a1K

′ = 0 , Λ = 0 ,

K ′′ +m2K = 0 , m2 =
a0(a1 − a0)

b4a1
, (11)

with G = S′ +K and S = H/2. The solution of this equations is

K = A(u) cosmy +B(u) sinmy ,

1

2
H =

a1 − a0

a0m
(A(u) sinmy −B(u) cosmy) + h1(u) + h2(u)y .(12)

As we already said the h1 and h2 do not contribute to the radiation part of
the curvature and can be discarded as trivial solution. Consequently, when



Velocity memory effect for gravitational waves with torsion 291

the torsion is not present the metric becomes trivial. This is to be expected
since general relativity in three-dimensions is a theory without propagating
local degrees of freedom. Because the metric is crucially related to the
torsion we can extract information about the torsion already on the level
of the metric and geodesic motion.

4. Motion of massive test particle

In this section we investigate the geodesic motion of massive test particle in
the presence of the massive pp wave with torsion described in the previous
section. The geodesic motion of the test particle is obtained by solving a
geodesic equation in which appear Christoffel (Riemannian) connection. So
first we have to find the Christoffel connection for the metric of the masive
pp wave with torsion.

4.1. Christoffel connection

The Christoffel connection is easily derived from the metric using the well
known formula

Γ̃µνρ =
1

2
gµα (∂νgαρ + ∂ρgαν − ∂αgνρ) , (13)

and its non-zero components are given by

Γ̃vuu =
1

2
∂uH ,

Γ̃vuy =
1

2
H ′ , Γ̃vyu =

1

2
∂yH ,

Γ̃yuu =
1

2
∂yH . (14)

Let us note that existence of a non-trivial metric of the pp wave is due to
the presence of torsion. This allows us to see effects of torsion on the level
of metric and, consequently, in geodesic motion of test particles [12].

4.2. Geodesic equations

The geodesic equation for u is

d2u

dλ2
= 0 . (15)

Consequently, we take u ≡ λ.
The equation for y reads

ÿ +
1

2
∂yH = 0 , (16a)
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after substitution of explicit form of the function H it becomes

ÿ +
a1 − a0

a0
(A(u) cosmy +B(u) sinmy) = 0 . (16b)

The equation for v is

v̈ +
1

2
∂uH + ∂yHẏ = 0 , (17)

or explicitly

v̈ +
a1 − a0

ma0
(A′(u) sinmy −B′(u) cosmy)

+
a1 − a0

a0
(A(u) cosmy +B(u) sinmy)ẏ = 0 , (18)

4.3. Velocity memory effect

The velocity memory effect is present in the case when functions A(u) and
B(u) vanish for large u. For numerical calculations it is better to introduce
functions Ā(u) = a1−a0

a0
A and B̄(u) = a1−a0

a0
B(u) which we will use later

in the text instead of A(u) and B(u). The velocity changes as one changes
initial conditions, so this is a true observable effect. We do not show plots
for different initial conditions because we wanted the presentation to be as
short as possible.

4.4. Shockwave case

In the shock wave case when functions Ā(u) = 0 and B̄(u) vanishes expo-

nentially B̄(u) = e−(u−10)2 numerical solutions of the geodesic equations
gives the plots [12]for the particle velocities ẏ and v̇ shown in the Figure 1.

4.5. Slow fall off

In the case when Ā(u) = 0 and B̄(u) = 1/u numerical solutions lead to the
following plots [12] for the particle velocities ẏ and v̇ shown in the Figure
2.

5. Conclusion

We investigated a motion of massive test particles in asymptotically flat pp
wave spacetime with torsion. The meaning of this is that test particle is
initially well described by a particle in Minkowski spacetime and at some
point a pp wave passes by and at time-like infinity a particle is again well
described by its motion in Minkowski spacetime. Consequently, proper-
ties of particles motion at initial time and at infinity can be consistently
compared.
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Figure 1: The plot for the particle velocity ẏ and v̇ in units m = 1, for

B̄ = −e−(u−10)2

The conclusion is that velocity memory effect happens both for the ex-
ponentially fast fall-off of the gravitational wave as well as for the arbitrary
polynomial fall-off. For the related work on memory effect for massive
gravitons see Ref. [13]. This is the first time the memory effect for gravi-
tational waves with torsion is analyzed. To authors knowledge, this is also
the first example of the memory effect in three-dimensional gravity.

In the last few years there was a lot of effort on connecting asymptotic
symmetries, soft theorems and memory effect [14]. This approach based on
BMS symmetry offers a new perspective on the black hole microstates and
information loss [15]. It is an open problem to connect the memory effect
described in this article with asymptotic symmetry of the theory.

It is very interesting to generalize the analysis of this paper to the pp
waves in four dimensions [16]. Preliminary results [17] show that most of
the conclusions of this paper transfer to the four-dimensional case. This
is important effect because it offers a possible experimental set up for the
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Figure 2: The plot for the particle velocity ẏ and v̇ in units m = 1, for
B̄ = −1/u

detection of torsion.
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